PC-2020 Subject : PHYSICS & CHEMISTRY

22095521

(Booklet Number)

Full Marks: 100

Duration: 2 Hours

INSTRUCTIONS

- This question paper contains all objective questions divided into three categories. Each
 question has four answer options given.
- Category-I: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.
- 3. Category-II: Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted.
- 4. Category-III: Carry 2 marks each and also one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked + actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C, or D.
- 6. Use only Black/Blue ball point pen to mark the answer by complete filling up of the respective bubbles.
- 7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the OMR. Also fill appropriate bubbles.
- 9. Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 10. The OMR is liable to become invalid if there is any mistake in filling the correct bubbles for question booklet number/roll number or if there is any discrepancy in the name/signature of the candidate, name of the examination centre. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Candidates are not allowed to carry any written or printed material, calculator, pen, docu-pen, log table, wristwatch, any communication device like mobile phones etc. inside the examination hall. Any candidate found with such items will be reported against & his/her candidature will be summarily cancelled.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.
- 14. This paper contains questions in both English and Bengali. Necessary care and precaution were taken while framing the Bengali version. However, if any discrepancy(ies) is /are found between the two versions, the information provided in the English version will stand and will be treated as final.

PC-2020 SPACE FOR ROUGH WORK

PHYSICS

Category-I (Q. 1 to 30)

Category-1: Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, 1/4 mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে। নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে 1/4 নম্বর কাটা যাবে।

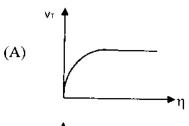
- The bob of a swinging seconds pendulum (one whose time period is 2 s) has a small 1. speed v_0 at its lowest point. Its height from this lowest point 2.25 s after passing through it is given by
 - $(A) \quad \frac{\mathbf{v}_0^2}{2\mathfrak{o}}$
- (B) $\frac{\mathbf{v}_0^2}{\sigma}$ (C) $\frac{\mathbf{v}_0^2}{4\sigma}$
- (D) $\frac{9v_0^2}{4g}$

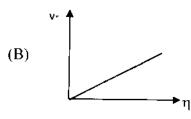
একটি সেকেন্ড পেডুলামের (যার দোলনকাল $2~{
m s}$) পিন্ডটি তার সর্বনিমু অবস্থান, অতি অলপ দ্রুতি ${
m v}_o$ সহ অতিক্রম করে। সেক্ষেত্রে সর্বনিমু অবস্থান অতিক্রম করার 2.25 s পরে পিডটির উচ্চতা কত হবে ?

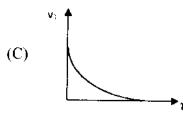
- (A) $\frac{\mathbf{v}_0^2}{2\sigma}$

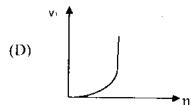
- (B) $\frac{v_0^2}{g}$ (C) $\frac{v_0^2}{4g}$ (D) $\frac{9v_0^2}{4g}$
- A steel and a brass wire, each of length 50 cm and cross-sectional area 0.005 cm2 hang 2. from a ceiling and are 15 cm apart. Lower ends of the wires are attached to a light horizontal bar. A suitable downward load is applied to the bar so that each of the wires extends in length by 0.1 cm. At what distance from the steel wire the load must be applied?

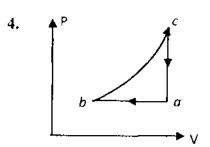
[Young's modulus of steel is 2×10^{12} dynes/cm² and that of brass is 1×10^{12} dynes/cm²]

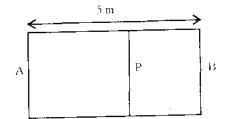

- (A) 7.5 cm
- (B) 5 cm
- (C) 10 cm
- (D) 3 cm


প্রতিটি 50 cm লম্বা ও 0.005 cm² প্রস্থচেছদ বিশিষ্ট একটি ষ্টীলের ও একটি পিতলের তার ছাদ থেকে 15 cm ব্যবধানে ঝোলানো আছে। তার দৃটির নীচের প্রান্তদ্বয় একটি অনুভূমিক দণ্ডের সঙ্গে যুক্ত। অনুভূমিক দশুটির কোনো এক বিন্দুতে একটি নিমুমুখী বল প্রয়োগ করা হল যার ফলে দুটি তারেরই 0.1 cm করে দৈর্ঘ্য বৃদ্ধি হল। ষ্টীলের তারটি থেকে ঠিক কত দূরতে ওই বল প্রয়োগ করতে হবে ? [ষ্টীলের ইয়ং গুণান্ধ $2 \times 10^{12} \ dynes/cm^2$ এবং পিতলের ইয়ং গুণান্ধ $1 \times 10^{12} \ dynes/cm^2]$


- (A) 7.5 cm
- (B) 5 cm
- (C) 10 cm
- (D) 3 cm


3. Which of the following diagrams correctly shows the relation between the terminal velocity V_T of a spherical body falling in a liquid and viscosity η of the liquid?


কোনো তরলে পতনরত একটি গোলাকার বস্তুর অন্তিম বেগ $V_{_{\rm I}}$ এবং ওই তরলের সাম্দ্রতা η -এর সম্পর্ক, নীচের কোন্ লেখচিত্রটি দ্বারা বোঝায় ?



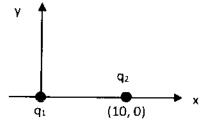
An ideal gas undergoes the cyclic process *abca* as shown in the given P-V diagram. It rejects 50 J of heat during *ab* and absorbs 80 J of heat during *ca*. During *bc*, there is no transfer of heat and 40 J of work is done by the gas. What should be the area of the closed curve *abca*?

- (A) 30 J
- (B) 40 J
- (C) 10 J
- (D) 90 J

P-V সূচক চিত্রে যেমন দেখানো হয়েছে, একটি আদর্শ গ্যাস abca আবর্ত প্রক্রিয়া সম্পন্ন করে। গ্যাসটি ab প্রক্রিয়ায় 50 J তাপ বর্জন করে এবং ca প্রক্রিয়ায় 80 J তাপ গ্রহণ করে। bc প্রক্রিয়ায় কোনো তাপ গ্রহণ বা বর্জন হয় না কিছু গ্যাসটি 40 J কার্য্য সম্পন্ন করে। সেক্ষেত্রে abca লেখটি দ্বারা আবদ্ধ ক্ষেত্রের ক্ষেত্রফল কত ?

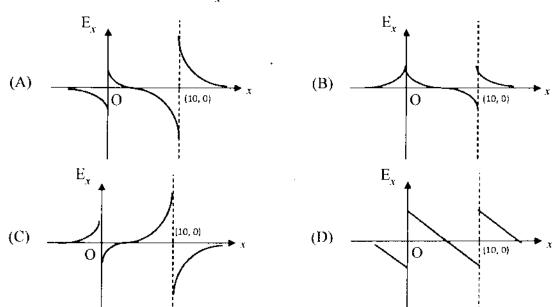
- (A) 30 J
- (B) 40.
- (C) 10 J
- (D) 90 J

A container AB in the shape of a rectangular parallelopiped of length 5 m is divided internally by a movable partition P as shown in the figure. The left compartment is filled with a given mass of an ideal gas of molar mass 32 while the right compartment is filled with an equal mass of another ideal gas of molar mass 18 at same temperature. What will be the distance of P from the left wall A when equilibrium is established?


- (A) 2.5 m
- (B) 1.8 m
- (C) = 3.2 m
- (D) -2.1 m

চিত্রে যেমন দেখানো হয়েছে, 5 m লম্বা একটি আয়তাকার বদ্ধ আধার AB-এর ভিতরে একটি চলমান দেয়াল P দিয়ে ভাগ করা আছে। বাঁ দিকের অংশটি 32 আণবিক ভরের একটি আদর্শ গ্যাস দারা পূর্ণ আছে এবং ডান দিকের অংশটি একই তাপমাত্রায় 18 আণবিক ভরের অন্য একটি আদর্শ গ্যাস দারা পূর্ণ আছে। দৃটি গ্যাসের সমান ভর। সেক্ষেত্রে সাম্যাবস্থায় পৌঁছানোর পরে P দেয়ালটি বাঁ দিকের দেয়াল A থেকে কত দরত্বে থাকবে ?

- (A) 2.5 m
- (B) 1.8 m
- (C) = 3.2 m
- (D) 2.1 m
- 6. When 100 g of boiling water at 100 °C is added into a calorimeter containing 300 g of cold water at 10 °C, temperature of the mixture becomes 20 °C. Then a metallic block of mass 1 kg at 10 °C is dipped into the mixture in the calorimeter. After reaching thermal equilibrium, the final temperature becomes 19 °C. What is the specific heat of the metal in C.G.S. unit?
 - (A) 0.01
- (B) 0.3
- (C) = 0.09
- (D) 0.1


 $100~^{\circ}\text{C}$ –এ 100~g ফুটন্ত জল $10~^{\circ}\text{C}$ –এ 300~g জল সহ একটি ক্যালোরিমিটারে ঢালা হল যার ফলে মিশ্রণের তাপমাত্রা হল $20~^{\circ}\text{C}$ । তারপর $10~^{\circ}\text{C}$ –এ রাখা 1~kg ভরের একটি ধাতব খণ্ড ওই মিশ্রণে ডোবানো হল। তাপীয় সাম্যাবস্থায় পৌছলে সংস্থাটির অন্তিম উষ্ণতা হল $19~^{\circ}\text{C}$ । সেক্ষেত্রে C.G.S. এককে ধাতুটির আপেক্ষিক তাপ কত ?

- (A) = 0.01
- (B) = 0.3
- (C) = 0.09
- (D) = 0.1

As shown in the figure, a point charge $q_1 = \pm 1 \times 10^{-6}$ C is placed at the origin in x-y plane and another point charge $q_2 = +3 \times 10^{-6}$ C is placed at the co-ordinate (10, 0). In that case, which of the following graph(s) shows most correctly the electric field vector in E_x in x-direction?

প্রদর্শিত চিত্রের মতো, একটি বিন্দু আধান $q_1=\pm 1 \times 10^{-6}~\mathrm{C}$ –কে $\mathrm{x-y}$ তলে মূল বিন্দুতে রাখা হল এবং আর একটি বিশ্দু আধান ${
m q}_2=+3 imes 10^{-6}~{
m C}$ -কে $(10,\,0)$ স্থানাঙ্কে রাখা হল। সেক্ষেত্রে নীচের কোন্ (কোন্) লেখচিত্রটি x-অভিমুখে তড়িৎ ক্ষেত্র E_x -এর মান সবথেকে সঠিক ভাবে নির্দেশ করে ?

- 8. Four identical point masses, each of mass m and carrying charge +q are placed at the corners of a square of sides 'a' on a frictionless plain surface. If the particles are released simultaneously, the kinetic energy of the system when they are infinitely far apart is
- (A) $\frac{q^2}{3}(2\sqrt{2}+1)$ (B) $\frac{q^2}{3}(\sqrt{2}+2)$ (C) $\frac{q^2}{3}(\sqrt{2}+4)$ (D) $\frac{q^2}{3}(\sqrt{2}+1)$

m ভর ও +q আধান সম্পন্ন চারটি সদৃশ বস্তু কণাকে একটি ঘর্ষণহীন সমতলের উপর 'a' দৈর্ঘ্য বিশিষ্ট একটি বর্গের চার কোণায় রাখা হল। কণাগুলিকে যদি এক সঙ্গে ছেড়ে দেওয়া হয় তবে তারা পরস্পর থেকে অসীম দুরতে সরে যাওয়ার পর সংস্থাটির মোট গতিশক্তি কত হবে ?

- (A) $\frac{q^2}{a}(2\sqrt{2}+1)$ (B) $\frac{q^2}{a}(\sqrt{2}+2)$ (C) $\frac{q^2}{a}(\sqrt{2}+4)$ (D) $\frac{q^2}{a}(\sqrt{2}+1)$

A very long charged solid cylinder of radius 'a' contains a uniform charge density ρ. 9. Dielectric constant of the material of the cylinder is k. What will be the magnitude of electric field at a radial distance 'x' $(x \le a)$ from the axis of the cylinder?

(A)
$$\rho \frac{x}{\epsilon_0}$$

(A) $\rho \frac{x}{\epsilon_0}$ (B) $\rho \frac{x}{2k\epsilon_0}$ (C) $\rho \frac{x^2}{2a\epsilon_0}$ (D) $\rho \frac{x}{2k}$

একটি 'a' ব্যাসার্ধের খুব লম্বা আহিত নিরেট চোঙ-এর আধান ঘনত্ব হল ho । চোঙটির উপাদানের পরাবৈদ্যুতিক ধ্রুবক k। তাহলে চোঙটির ব্যাসার্ধ বরাবর ˈxˀ (x < a) দূরত্বে তড়িৎক্ষেত্রের মান কত ?

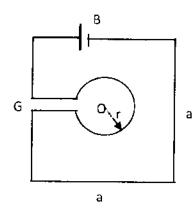
(A)
$$\rho \frac{x}{\epsilon_0}$$

(A) $\rho \frac{x}{\epsilon_0}$ (B) $\rho \frac{x}{2k\epsilon_0}$ (C) $\rho \frac{x^2}{2a\epsilon_0}$ (D) $\rho \frac{x}{2k}$

A galvanometer can be converted to a voltmeter of full-scale deflection V_0 by connecting 10. a series resistance R₁ and can be converted to an ammeter of full-scale deflection I₀ by connecting a shunt resistance R2. What is the current flowing through the galvanometer at its full-scale deflection?

(A)
$$\frac{V_0 - I_0 R_2}{R_1 - R_2}$$

(A) $\frac{V_0 - I_0 R_2}{R_1 - R_2}$ (B) $\frac{V_0 + I_0 R_2}{R_1 + R_2}$ (C) $\frac{V_0 - I_0 R_1}{R_2 - R_1}$ (D) $\frac{V_0 + I_0 R_1}{R_1 + R_2}$


একটি গ্যালভানোমিটারকে ${
m V}_0$ সর্বোচ্চ বিক্ষেপের একটি ভোল্টমিটারে পরিণত করতে হলে ${
m R}_1$ রোধ শ্রেণী সমবায়ে যুক্ত করতে হয় এবং ${f I}_0$ সর্বোচ্চ বিক্ষেপের একটি অ্যাম্মিটারে পরিণত করতে হলে ${f R}_2$ রোধ সমান্তরাল সমবায়ে যুক্ত করতে হয়। সেক্ষেত্রে গ্যালভানোমিটারটির সর্বোচ্চ বিক্ষেপে তার মধ্য দিয়ে প্রবাহ মাত্রা কত হয় ?

(A)
$$\frac{V_0 - I_0 R_2}{R_1 - R_2}$$
 (B) $\frac{V_0 + I_0 R_2}{R_1 + R_2}$ (C) $\frac{V_0 - I_0 R_1}{R_2 - R_1}$ (D) $\frac{V_0 + I_0 R_1}{R_1 + R_2}$

(B)
$$\frac{V_0 + I_0 R_1}{R_1 + R_2}$$

(C)
$$\frac{V_0 - I_0 R_1}{R_2 - R_1}$$

(D)
$$\frac{V_0 + I_0 R_1}{R_1 + R_2}$$

As shown in the figure, a single conducting wire is bent to form a loop in the form of a circle of radius 'r' concentrically inside a square of side 'a', where $a: r=8:\pi$. A battery B drives a current through the wire. If the battery B and the gap G are of negligible sizes, determine the strength of magnetic field at the common centre O.

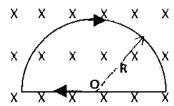
(A) $\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - 1)$

(B) $\frac{\mu_0 I}{2\pi a} (\sqrt{2} + 1)$

(C) $\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$

(D) $\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$

একটি পরিবাহী তারকে প্রদর্শিত চিত্রের মতো বাঁকিয়ে 'a' দৈর্ঘ্যের একটি বর্গ ও তার ভিতরে 'r' ব্যাসার্ধের একটি সমকেন্দ্রিক বৃত্তের আকার দেওয়া হল যাতে $a:r=8:\pi$ হয়। শ্রেণী সমবায়ে যুক্ত একটি কোশ B লুপটিতে তড়িৎ প্রবাহ সৃষ্টি করল। B কোশ ও G ফাঁকটির আকার যদি নগন্য হয় তবে লুপটির সাধারণ কেন্দ্র O-তে চুম্বক ক্ষেত্রের মান কত ?


(A) $\frac{\mu_0 I}{2\pi a} \sqrt{2} (\sqrt{2} - 1)$

(B) $\frac{\mu_0 I}{2\pi a} (\sqrt{2} + 1)$

(C) $\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} + 1)$

(D) $\frac{\mu_0 I}{\pi a} 2\sqrt{2} (\sqrt{2} - 1)$

12.

As shown in the figure, a wire is bent to form a D-shaped closed loop, carrying current I, where the curved part is a semi-circle of radius R. The loop is placed in a uniform magnetic field \vec{B} , which is directed into the plane of the paper. The magnetic force felt by the closed loop is

- (A) 0
- (B) IRB
- (C) 2JRB
- (D) $\frac{1}{2}$ IRB

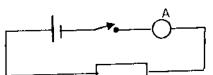
প্রদর্শিত চিত্রের মতো একটি পরিবাহী তারকে R ব্যাসার্ধের অর্ধবৃত্তের মতো বাঁকিয়ে একটি D আকৃতির বদ্ধ বর্তনী গঠন করা হয়েছে যার মধ্যে প্রবাহ মাত্রা হল । বর্তনীটিকে একটি সুষম চৌম্বকক্ষেত্র B-তে স্থাপন করা হল । চৌম্বকক্ষেত্রটি পৃষ্ঠার ভিতর দিকে লম্ব ভাবে ক্রিয়াশীল। সেক্ষেত্রে সমগ্র বর্তনীর উপর প্রযুক্ত বলের মান কত ?

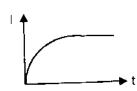
- (A) 0
- (B) IRE
- (C) 2IRB
- (D) $\frac{1}{2}$ IRB

What will be the equivalent resistance between the terminals A and B of the infinite resistive network shown in the figure?

- $(A) \quad \frac{(\sqrt{3}+1)R}{2}$
- (B) $\frac{(\sqrt{3}-1)R}{2}$ (C) $3\frac{R}{2}$
- (D) $(\sqrt{3}+1)R$

চিত্রে প্রদর্শিত রোধের অসীম বর্তনীটির A এবং B প্রান্তে তুল্য রোধ কত ?

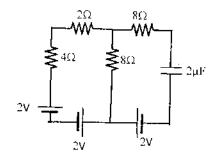

(A)
$$\frac{(\sqrt{3}+1)R}{2}$$
 (B) $\frac{(\sqrt{3}-1)R}{2}$ (C) $3\frac{R}{2}$


$$(B) \quad \frac{(\sqrt{3}-1)R}{2}$$

(C)
$$3 \frac{R}{2}$$

(D)
$$(\sqrt{3}+1)R$$

14.


When a DC voltage is applied at the two ends of a circuit kept in a closed box, it is observed that the current gradually increases from zero to a certain value and then remains constant. What do you think that the circuit contains?

(A) A resistor alone

- A capacitor alone
- A resistor and an inductor in series
- (D) A resistor and a capacitor in series

একটি বন্ধ বাক্সের মধ্যে রাখা একটি বর্তনীর দুই প্রান্তে DC ভোল্টেজ দিলে দেখা গেল যে প্রবাহ মাত্রা প্রথমে শূন্য থেকে ধীরে ধীরে বাড়তে থাকে একসময় স্থির মাত্রায় পৌছয়। বর্তনীটিতে কী আছে বলে মনে কর ?

- (A) শুধুমাত্র একটি ব্লোধ
- শুধুমাত্র একটি ধারক (B)
- শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি আবেশক
- শ্রেণী সমবায়ে যুক্ত একটি রোধ ও একটি ধারক

Consider the circuit shown. If all the cells have negligible internal resistance, what will be the current through the 2 Ω resistor when steady state is reached?

- (A) 0.66 A
- (B) 0.29 A
- (C) = 0 A
- (D) 0.14 A

চিত্রে প্রদর্শিত বর্তনীটি বিবেচনা কর। সমস্ত কোশগুলির অভ্যন্তরীণ রোধ উপেক্ষণীয় হলে অন্তিম সাম্যাবস্থায় পৌছানোর পর 2 Ω রোধের মধ্য দিয়ে প্রবাহ মাত্রা কত হবে ?

- (A) = 0.66 A
- (B) 0.29 A
- (C) = 0 A
- (D) 0.14 A
- 16. Consider a conducting wire of length L bent in the form of a circle of radius R and another conductor of length 'a' (a << R) is bent in the form of a square. The two loops are then placed in same plane such that the square loop is exactly at the centre of the circular loop. What will be the mutual inductance between the two loops?

- (A) $\mu_0 \frac{\pi a^2}{L}$ (B) $\mu_0 \frac{\pi a^2}{16L}$ (C) $\mu_0 \frac{\pi a^2}{4L}$ (D) $\mu_0 \frac{a^2}{4\pi L}$

L দৈর্ঘ্যের একটি পরিবাহী তারকে বাঁকিয়ে R ব্যাসার্ধের একটি বৃত্তের আকার দেওয়া হল এবং 'a' (a<<R) দৈর্ঘ্যের আর একটি পরিবাহী তারকে বাঁকিয়ে একটি বর্গের আকার দেওয়া হল। তারপর ওই দৃটি লুপকে একই সমতলে এমন ভাবে রাখা হল যে বর্গাকৃতি লুপটি বৃত্তাকার লুপের ঠিক কেন্দ্রে থাকে। সেক্ষেত্রে লুপ দৃটির মধ্যে পারস্পরিক আবেশের মান কত ?

- (A) $\mu_0 \frac{\pi a^2}{L}$ (B) $\mu_0 \frac{\pi a^2}{16L}$ (C) $\mu_0 \frac{\pi a^2}{4L}$ (D) $\mu_0 \frac{a^2}{4\pi L}$

- 17. An object is placed 60 cm in front of a convex mirror of focal length 30 cm. A plane mirror is now placed facing the object in between the object and the convex mirror such that it covers lower half of the convex mirror. What should be the distance of the plane mirror from the object so that there will be no parallax between the images formed by the two mirrors?
 - (A) 40 cm (B) 30 cm (C) 20 cm (D) 15 cm একটি ব্যুকে 30 cm ফোকাস দুরত্বের একটি উত্তল দর্পণের সামনে 60 cm দুরে রাখা হল। এরপর একটি সমতল দর্পণকে তাদের মাঝে এমন ভাবে রাখা হল যে উত্তল দর্পণের নীচের অর্ধাংশ ঢাকা পড়ে যায়। সমতল দর্পণটিকে বস্তুটির থেকে ঠিক কত দূরত্বে রাখলে দূটি দর্পণে সৃষ্ট প্রতিবিশ্বদ্বয়ের মধ্যে কোনো লম্বন ত্রটি থাকবে না ?
 - (A) 40 cm
- (B) 30 cm
- (D) 15 cm

18.	A thin convex lens is placed just above an empty vessel of depth 80 cm. The image of a coin kept at the bottom of the vessel is thus formed 20 cm above the lens. If now water is poured in the vessel up to a height of 64 cm, what will be the approximate new position of the image. Assume that refractive index of water is 4/3. (A) 21.33 cm above the lens (B) 6.67 cm below the lens (C) 33.67 cm above the lens (D) 24 cm above the lens 80 cm গভীৰতার একটি খালি পাত্রের ঠিক উপরে (মুখের কাছে) একটি পাতলা অভিসারী লেম্স রাখা হল যাতে পাত্রের তলায় রাখা একটি পয়সার প্রতিবিধ্যের নাজন অবস্থান কোথায় হবে ? ধরে নাও জলে									on হল,	
	যাতে মধ্যে	পাত্রের 64 cm	তলায় রাখা এ উচ্চতার জন		শয়সার প্রতিবিম্ব দেওয়া হলে প্র						
	•	বান্ধ 4/				(D)	6.67	an লেম্স-এর	নীচে		
	(A)	21.33	cm লেম্স-এ	র উপ	র						
	(C)	33.67	om লেম্স-এ	র উপ্	র	(D)	24 cm	া লেম্স-এর উ	i (IÇM		
19.	The is fo	intens und te approx	ity of light of be 1.5 time imate ratio	emergi	ng from one intensity of lensity of an in	of the slit- ight emerg nterference	s in a ' ging fr e maxi	Young's dou om the othe mum to tha	ible sli r slit. t of ar	t experim What will interfere	ient I be ince
	7.4.5	mum ' 2.25		(B)	98	(C)	5		(D)		
	ইয়ং- আলে (A)	-এর দ্বি গার তীব্র 2.25	তার 1.5 গুণ	্ব দেখা সেক্ষে (B)	গেল, এক ছিড ত্রে সর্বোচ্চ ও স 98	বানমু ব্যাতা (C)	5 5	AICAII A OETOL	(D)	9.9	
20.	In a mon	Froun	hofer diffra matic light distance of	ction e of wa 50 cm	experiment, a velength 600 n from the sl	it. What w	vill be	the linear se	eparati	on of the	by a on a first
	(A)	1.0 1	nm	(B)	1.1 mm		0.6 n		(D)	1.2 mm	_
	আৰে	না দ্বারা	প্রভাসিত করা	হল এ	ক্ষায় 0.5 mm বং 50 cm দূরে চদুরত্ব কত ?	্রকটি পদী	র উপর	অপবতন সঞ	জা (৩৭	ા રજા ! (ગ	কবণী ক্ষুত্রে
	(A)	1.0	mm	(B)	1.1 mm	(C)	0.6 r	nm	(D)	1.2 mm	
21.	way	ve-leng	gth in the rai	ige of	nt in cm ⁻¹ , the						
					$\frac{7}{5R} \text{ to } \frac{19}{5R} \text{ co}$						
			^{–।} মাত্রায় রি সরণ করে না		ধ্রুবক হয় তে	ব হাইড্রোঞ্	ন পর	মাণু যে অংশে	র তরঙ	দির্ঘ্যের (,কানো

Ā

(A) $\frac{1}{R} to \frac{4}{3R} cm$ (B) $\frac{7}{5R} to \frac{19}{5R} cm$ (C) $\frac{4}{R} to \frac{36}{5R} cm$ (D) $\frac{9}{R} to \frac{144}{7R} cm$

22. A nucleus X emits a beta particle to produce a nucleus Y. If their atomic masses are M_x and M_y respectively, the maximum energy of the beta particle emitted is (where m_e is the mass of an electron and c is the velocity of light)

(A) $(M_x - M_v - m_e) e^2$

(B) $(M_x - M_y + m_e) c^2$

(C) $(M_y - M_y) c^2$

(D) $(M_x - M_v - 2m_e) c^2$

নিউক্লিয়াস X একটি বিটা কণা নিঃসরণ করে নিউক্লিয়াস Y সৃষ্টি করে। তাদের পারমাণবিক ভর যদি যথাক্রমে M_x ও M_y হয় তবে নিঃসৃত বিটা কণার সর্বোচ্চ শক্তি হবে (ধরে নাও, ইলেক্সনের ভর m_c ও আলোর বেগ c)

(A) $(M_x - M_y - m_e) e^2$

(B) $(M_x - M_v + m_e) c^2$

(C) $(M_x - M_y) e^2$

(D) $(M_x - M_y - 2m_e) c^2$

23. For nuclei with mass number close to 119 and 238, the binding energies per nucleon are approximately 7.6 MeV and 8.6 MeV respectively. If a nucleus of mass number 238 breaks into two nuclei of nearly equal masses, what will be the approximate amount of energy released in the process of fission?

(A) 214 MeV

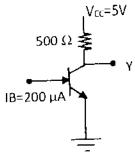
- (B) 119 MeV
- (C) 2047 MeV
- (D) 1142 MeV

119 ও 238-এর কাছাকাছি ভরসংখ্যার নিউক্লিয়াসগুলির ক্ষেত্রে নিউক্লিয়ন প্রতি বন্ধনশক্তি হল যথাক্রমে 7.6 MeV ও 8.6 MeV। যদি 238 ভরসংখ্যার একটি নিউক্লিয়াস প্রায় সমান ভরের দুটি নিউক্লিয়াসে বিভাজিত হয় তবে সেই বিভাজন প্রক্রিয়ায় উদ্ভূত শক্তির পরিমাণ প্রায় কত ?

- (A) 214 MeV
- (B) 119 MeV
- (C) 2047 MeV
- (D) 1142 MeV
- 24. A common emitter transistor amplifier is connected with a load resistance of $6 \, k\Omega$. When a small a.c. signal of 15 mV is added to the base emitter voltage, the alternating base current is $20 \, \mu A$ and the alternating collector current is $1.8 \, mA$. What is the voltage gain of the amplifier?

(A) 90

- (B) 640
- (C) 900
- (D) 720


একটি সাধারন নিঃসারক বিবর্ধক-এ 6 k Ω লোড রোধ যুক্ত আছে। যখন ভূমি-নিঃসারক বিভবের উপর $15~{
m mV}$ মানের একটি ক্ষুদ্র পরিবর্তী সংকেত যোগ করা হয় তখন পরিবর্তী ভূমি প্রবাহ হয় $20~{
m \mu A}$ এবং পরিবর্তী সংগ্রাহক প্রবাহ হয় $1.8~{
m mA}$ । বিবর্ধকটির ভোল্টেজ লাভ (gain) কত ?

(A) 90

(B) 640

(C) 900

(D) 720

In the circuit shown, the value of β of the transistor is 48. If the base current supplied is 200 μA , what is the voltage at the terminal Y?

(A) = 0.2 V

0.5 V (B)

(C) 4 V

(D) 4.8 V

চিত্রে প্রদর্শিত বর্তনীতে ট্রান্জিষ্টারটির β-এর মান 48 + ট্রান্জিষ্টারটির ভূমি-প্রবাহের মান যদি 200 μΑ হয় তবে Y প্রান্তে বিভব কত হবে ?

(A) = 0.2 V

0.5 V

(C) 4 V

(D) 4.8 V

The frequency v of the radiation emitted by an atom when an electron jumps from one 26. orbit to another is given by $v = k \delta E$, where k is a constant and δE is the change in energy level due to the transition. Then dimension of k is

- (A) $ML^2\Gamma^2$
- (B) the same dimension of angular momentum
- (C) ML^2T^{-1}
- (D) $M^{-1}L^{-2}T$

কোনো পরমাণুর মধ্যে একটি ইলেক্সন যখন এক কক্ষ থেকে অন্য কক্ষে সংক্রমিত হয় তখন নিঃসৃত বিকিরণের কম্পান্ক যে সমীকরণ মেনে চলে তা হল v=k δE , যেখানে k একটি ধ্রুবক এবং δE হল ওই দৃই কক্ষের শক্তির মানের পার্থক্য। তাহলে k-এর মাত্রা হবে

(A) ML^2T^{-2}

(B) কৌণিক ভরবেগের মাত্রার সমান

(C) ML^2T^{-1}

(D) $M^{-1}L^{-2}\Gamma$

Consider the vectors $\vec{A} = \hat{i} + \hat{j} - \hat{k}$, $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}}(\hat{i} - 2\hat{j} + 2\hat{k})$. What is the

value of \vec{C} . $(\vec{A} \times \vec{B})$?

(B) = 0

(C) $3\sqrt{2}$ (D) $18\sqrt{5}$

 $\vec{A} = \hat{i} + \hat{j} - \hat{k}$, $\vec{B} = 2 \, \hat{i} - \hat{j} + \hat{k}$, $\vec{C} = \frac{1}{\sqrt{5}} (\hat{i} - 2 \, \hat{j} + 2 \, \hat{k})$. ভেষ্টরগুলি বিবেচনা কর । সেক্ষেত্রে

 \vec{C} . $(\vec{A} \times \vec{B})$ -এর মান কত ?

(C) $3\sqrt{2}$ (D) $18\sqrt{5}$

28. A fighter plane, flying horizontally with a speed 360 kmph at an altitude of 500 m drops a bomb for a target straight ahead of it on the ground. The bomb should be dropped at what approximate distance ahead of the target? Assume that acceleration due to gravity (g) is 10 ms⁻². Also neglect air drag.

(A) 1000 m

(B) $50\sqrt{5}$ m

(C) $500\sqrt{5}$ m

(D) 866 m

একটি যুদ্ধবিমান 360 kmph দ্রতিতে 500 m উচ্চতায় অনভূমিক পথে চলতে চলতে সোজা সামনের দিকে ভূমিতে অবস্থিত একটি লক্ষ্যের উদ্দেশ্যে বোমা ফেললো। বোমাটি কত দূরত্ব আগেই ফেলতে হবে ? অভিকর্মজ ত্বরণ g -এর মান ধরে নাও $10~\mathrm{ms}^{-2}$ এবং বায়ুর ঘর্ষণ উপেক্ষা কর।

(A) 1000 m

(B) $50\sqrt{5}$ m (C) $500\sqrt{5}$ m

(D) 866 m

29. A block of mass m rests on a horizontal table with a co-efficient of static friction μ . What minimum force must be applied on the block to drag it on the table?

(A) $\frac{\mu}{\sqrt{1+\mu^2}}$ mg (B) $\frac{\mu-1}{\mu+1}$ mg (C) $\frac{\mu}{\sqrt{1-\mu^2}}$ mg (D) μ mg

একটি অনুভূমিক টেবিলের উপরে ${f m}$ ভরের একটি বস্তু রাখা আছে। টেবিল ও বস্তুটির মধ্যে স্থির-ঘর্ষণ গুণাষ্ক μ । ব্স্তুটিকে টেবিলের উপরে টেনে সরাতে হলে কমপক্ষে কত বল প্রয়োগ করতে হবে ?

(A) $\frac{\mu}{\sqrt{1+\mu^2}} mg$ (B) $\frac{\mu-1}{\mu+1} mg$ (C) $\frac{\mu}{\sqrt{1-\mu^2}} mg$ (D) μmg

30. A tennis ball hits the floor with a speed v at an angle θ with the normal to the floor. If the collision is inelastic and the co-efficient of restitution is ϵ , what will be the angle of reflection?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$ (D) $\theta\frac{2\varepsilon}{\varepsilon+1}$

একটি টেনিস বল ${f v}$ বেগে মেঝের উপর উল্লম্ব রেখার সঙ্গে ${f heta}$ আপতন কোণে আঘাত করল। ধরে নাও মেঝে ও বলের মধ্যে সংঘর্ষটি অস্থিতিস্থাপক এবং স্থিতিস্থাপক গুণাঙ্ক হল arepsilon। সেক্ষেত্রে বলটির প্রতিফলন কোণ কত হবে ?

(A) $\tan^{-1}\left(\frac{\tan\theta}{\varepsilon}\right)$ (B) $\sin^{-1}\left(\frac{\sin\theta}{\varepsilon}\right)$ (C) $\theta\varepsilon$

A

(D) $\theta \frac{2\varepsilon}{\varepsilon + 1}$

Category-II (Q. 31 to 35)

Carry 2 marks each and only one option is correct. In case of incorrect answer or combination of more than one answer, ½ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর

দিলে ½ নম্বর কাটা যাবে।

31. A metallic block of mass 20 kg is dragged with a uniform velocity of 0.5 ms⁻¹ on a horizontal table for 2.1 s. The co-efficient of static friction between the block and the table is 0.10. What will be the maximum possible rise in temperature of the metal block if the specific heat of the block is 0.1 C.G.S. unit? Assume g = 10 ms⁻² and uniform rise in temperature throughout the whole block. [Ignore absorption of heat by the table]

(A) 0.0025 °C

(B) 0.025 °C

 $(C) = 0.001 \, ^{\circ}C$

(D) 0.05 °C

 $20~{
m kg}$ ভরের একটি ধাতব বস্তুকে $0.5~{
m ms}^{-1}$ বেগে একটি অনুভূমিক টেবিলের উপর $2.1~{
m s}$ ধরে টানা হল। ওই বস্তুটি এবং টেবিলের মধ্যে স্থির ঘর্ষণ গুণাঙ্ক হল $0.10~{
m l}$ বস্তুটির উপাদানের আপেক্ষিক তাপ $0.1~{
m C.G.S.}$ একক হলে বস্তুটির তাপমাত্রা সর্বাধিক কত বৃদ্ধি পেতে পারে ? মনে কর ${
m g}=10~{
m ms}^{-2}$ এবং বস্তুটির সর্বাংশে সুষম ভাবে তাপমাত্রা বৃদ্ধি হয় । (টেবিল দারা তাপীয় শোষণ উপেক্ষা কর)

(A) 0.0025 °C

(B) 0.025 °C

(C) 0.001 °C

(D) 0.05 °C

32. Consider an engine that absorbs 130 cal of heat from a hot reservoir and delivers 30 cal heat to a cold reservoir in each cycle. The engine also consumes 2 J energy in each cycle to overcome friction. If the engine works at 90 cycles per minute, what will be the maximum power delivered to the load?

[Assume the thermal equivalent of heat is 4.2 J/cal]

(A) 816 W

(B) 819 W

(C) 627 W

(D) 630 W

মনে কর একটি ইঞ্জিন প্রতি চক্রে উষ্ণ আধার থেকে 130 cal তাপ গ্রহণ করে ও শীতল আধারে 30 cal তাপ বর্জন করে। এছাড়া ইঞ্জিনটি ঘর্ষণ অতিক্রম করার জন্য প্রতি চক্রে 2 J শক্তি ব্যবহার করে। ইঞ্জিনটি যদি প্রতি মিনিটে 90 চক্র অতিক্রম করে তবে লোড-এ সর্বোচ্চ কত ক্ষমতা প্রদান করতে পারবে ? [ধরে নাও, তাপের যাদ্রিক তুলাঙ্ক হল 4.2 J/cal]

(A) 816 W

(B) 819 W

(C) 627 W

(D) 630 W

33.	that when ea	lls, each carryir ach charge is tr en the strings?	ng charge ipled, ang	+q are hung f le between th	rom a ho e strings	ok by two double. V	strin Vhat	gs. It is fo was the in	unc itia
	(A) 30°	_	60°	(C)	45°	÷	(D)	90°	
	আছে। যদি প্র	ধান যুক্ত দুটি শে তিটি শোলার বলে ধ্য প্রাথমিক কোণ	র আধান ডি	মালাদা আলাদা চন গুণ করা হয়	সুতোর সাং । তবে সূতে	হায্যে একটি হা দুটির ম্	ট হুক ধ্যের চ	থেকে ঝোল কাণ দ্বিগুণ য	ানে ইয় ।
	(A) 30°		60°	(C)	45°		(D)	90°	
34.	placed perper	g circular loop ndicular to a sp) nt) T. Find th	atially uni	iform magnet	ic field B	, which v	aries	with time	t as
	(A) 0.5 C	(B)	0.2 C	(C)	0 C		(D)	0.14 C	
	B-এর উল্লম্ব ত	20 × 10 ⁻² m ² চলে রাখা হল। । । তাহলে t=0 সম হবে ? (B)	চৌম্বকক্ষেত্রা য়ে থেকে ও	টি সময় t-এর	সঙ্গে B=2 সময়ের	lsin(50πt) মধ্যে ওই ন্	⊺ সং বুপটির	মীকরণ অনু	याग्री
35.	+V and the obetween the p	rallel metal plat other is at grou plates with a vel he beam with th	ind potent locity v _o a	ial. A narrov nd in a directi	/ beam o on paralle	f electronel to the p	s ent lates.	ers the spa	ace
	(A) $\tan^{-1}\left(\frac{1}{n}\right)$	$\left(\frac{\text{eVL}}{\text{ndv}_0}\right)$		(B)	$\tan^{-1}\left(\frac{e}{m}\right)$	$\left(\frac{VL}{dv_0^2}\right)$			
	(C) $\sin^{-1}\left(\frac{\epsilon}{n}\right)$	$\frac{\text{eVL}}{\text{ndv}_0}$. (D)	$\cos^{-1}\left(\frac{e}{m}\right)$	$\left(\frac{eVL}{edv_0^2}\right)$			
	বিভবের সঙ্গে যু দুটির মধ্যবর্তী হ	াতিব পাত পরস্পর ক্ত আছে। অতঃগ য়ানে v _o বেগে প্রবে কত কোণ সৃষ্টি ক	পর পাত দূর্টি শে করলো।	টর সঙ্গে সমান্তর	াল পথে ই	লেষ্ট্রনের এ	কটি স্	্ষ্থি <u>স্</u> রোত, প	াত
	(A) $\tan^{-1}\left(\frac{\epsilon}{n}\right)$	`		(B)	$\tan^{-1}\left(\frac{e}{m}\right)$	$\frac{VL}{d\mathbf{v}_0^2}$			
	(C) $\sin^{-1}\left(\frac{e}{m}\right)$	$\frac{eVL}{dv_0}$		(D)	$\cos^{-1}\left(\frac{e}{m}\right)$	$\frac{\text{VL}}{\text{dv}_0^2}$			

Category-III (Q, 36 to 40)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and also no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong,

but there is no negative marking for the same and zero mark will be awarded. এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না ধাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে $2 \times যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা$ ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ ওনা নম্বর পাবে।

- A simple pendulum of length ℓ is displaced so that its taught string is horizontal and then 36. released. A uniform bar pivoted at one end is simultaneously released from its horizontal position. If their motions are synchronous, what is the length of the bar?
- (B) (
- (C) 2ℓ
- (D) $\frac{2\ell}{3}$

ি দৈর্ঘ্যের একটি সরল দোলকের পিশুটিকে অনুভূমিক রেখায় টান করে ধরে ছেড়ে দেওয়া হল। আবার একই সঙ্গে এক প্রান্তে রিভেট দিয়ে যুক্ত একটি সৃষম দশুকে অনুভূমিক রেখায় ধরে ছেড়ে দেওয়া হল। দৃটির গতি যদি সমলয় হয় তবে দশুটির দৈর্ঘ্য কত ?

- (B) $-\ell$
- $(C) = 2\ell$
- (D) $\frac{2\ell}{3}$
- A 400 Ω resistor, a 250 mH inductor and a 2.5 μF capacitor are connected in series with 37. an AC source of peak voltage 5 V and angular frequency 2kHz. What is the peak value of the electrostatic energy of the capacitor?
 - $(A) = 2 \mu J$
- (B) $2.5 \,\mu J$
- (C) 3.33 µJ
- (D) 5 µJ

একটি 400 Ω ব্লোধ, একটি 250 mH আবেশক ও একটি 2.5 μF ধারক, 5 V শীর্ষমান ও 2kHz কৌণিক কম্পাঙ্কের একটি AC উৎসের সঙ্গে শ্রেণী সমবায়ে যুক্ত করা হল। সেক্ষেত্রে ধারকের স্থির তড়িৎশক্তির শীৰ্ষমান কত হবে ?

- (B) $2.5 \mu J$ (C) $3.33 \mu J$

A charged particle moves with constant velocity in a region where no effect of 38. gravity is felt but an electrostatic field \tilde{E} together with a magnetic field \tilde{B} may be present. Then which of the following cases are possible?

(A) $\vec{E} \neq 0, \vec{B} \neq 0$

(B) $\vec{E} \neq 0$, $\vec{B} = 0$ (C) $\vec{E} = 0$, $\vec{B} = 0$

(D) $\vec{E} = 0$, $\vec{B} \neq 0$

একটি আহিত কণা এমন একটি ক্ষেত্রের মধ্যে ছির বেগে চলনশীল যেখানে অভিকর্ষজ তুরণের কোনো প্রভাব নেই কিন্তু স্থিরতড়িৎক্ষেত্র $ec{E}$ ও চৌম্বকক্ষেত্র $ec{B}$ থাকতে পারে $ec{I}$ তাহলে নীচের কোন্ (কোন্) অবস্থা সত্য হওয়া সম্ভব ?

(A) $\vec{E} \neq 0, \vec{B} \neq 0$

(B) $\vec{E} \neq 0, \vec{B} = 0$ (C) $\vec{E} = 0, \vec{B} = 0$

(D) $\vec{E} = 0$, $\vec{B} \neq 0$

39. A point source of light is used in an experiment of photo-electric effects. If the distance between the source and the photo-electric surface is doubled, which of the following may result?

- (A) Stopping potential will be halved.
- (B) Photo-electric current will decrease.
- Maximum kinetic energy of photo-electrons will decrease. (C)
- Stopping potential will increase slightly.

আলোক-তড়িৎক্রিয়ার একটি পরীক্ষায় একটি বিন্দু উৎস ব্যবহার করা হল। উৎস থেকে আলোক-তড়িৎ পৃষ্ঠের দূরত্ব যদি দ্বিগুণ করা হয় তবে ফলস্বরূপ নীচের কোন (কোন) ঘটনা ঘটতে পারে ?

- (A) নিরোধী বিভব অর্ধেক হয়ে যাবে
- আলোক-তড়িৎ প্রবাহ কমে যাবে (B)
- আলোক ইলেক্সনের সর্বোচ্চ গতিশক্তি কমে যাবে (C)
- নিরোধী বিভব সামান্য বৃদ্ধি পাবে (D)

40. Two metallic spheres of equal outer radii are found to have same moment of inertia about their respective diameters. Then which of the following statement(s) is/are true?

- The two spheres have equal masses (Λ)
- (B) The ratio of their masses is nearly 1.67:1
- (C) The spheres are made of different materials
- (D) Their rotational kinetic energies will be equal when rotated with equal uniform angular speed about their respective diameters

সমান বহিঃব্যাসার্ধ বিশিষ্ট দৃটি ধাতব গোলকের ক্ষেত্রে তাদের নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে জাড্য ভ্রামক সমান। তাহলে নীচের কোন (কোন) উত্তিনটি সত্য হতে পারে?

- (A) গোলক দুটির ভর সমান
- (B) গোলক দৃটির ভরের অনুপাত প্রায় 1.67:1
- গোলক দটি ভিন্ন উপাদানে তৈরী
- (D) গোলক দুটিকে নিজ নিজ ব্যাস-অক্ষ সাপেক্ষে সমান ও সৃষম কৌণিক বেগে ঘোরালে তাদের ঘুর্ণন গতিশক্তি সমান হবে

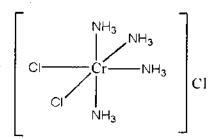
A

CHEMISTRY

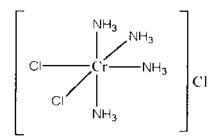
Category-I (Q. 41 to 70)

Category-I : Carry 1 mark each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ¼ mark will be deducted.

একটি উত্তর সঠিক। সঠিক উত্তর দিলে 1 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।


	A	the following	the ic	on which will be	more	effective for floc	culatio	n of Fe(OH) ₃
11.	sol. i		ne i	,				
		8 PO ₄ 3-	(B)	SO ₄ ²⁺	(C)	SO ₃ ²⁻	(D)	NO ₃
	্নিমের নিমের	্র তায়নগুলির মধ্যে (কানটি	Fe(OH) ₃ সলের তথ	ঃন এর	জন্য অধিক কার্যকা	রী হবে ?	•
		PO ₄ ³	(B)	SO ₄ ² .	(C)	SO ₃ ²⁻	(D)	NO ₃ "
42.	The	mole fraction of c	ethano	l in water is 0.08.	Its mo	olality is		
	(A)	6.32 mol kg ⁻¹	(B)	4.83 mol kg ⁻¹	(C)	3.82 mol kg ¹	(D)	2.84 mol kg ⁻¹
	जनी	য় দ্রবণে ইথানলের (মাল ভ	গ্লংশ 0.08 হ লে ঐ ড	ক্বণের	মোলালিটি হবে		
				4.83 mol kg ¹			(D)	2.84 mol kg ⁻¹
43.	5 m	d of 0.1 M Pb(1	NO ₃) ₂	is mixed with 1	0 mi	of 0.02 M KI.	The ar	nount of PbI ₂
	prec	ipitated will be al	bout					
	(A)	10^{-2} mol	(B)	10^{-4} mol	(C)	$2 \times 10^{-4} \text{ mol}$	(D)	10 ⁻³ mol
	5 মি	লি 0.1 M Pb(NO	₃) ₂ দ্ৰব	ণের সাথে 10 মিলি।	0.02 N	и кі দ্রবণ মিশ্রিত	করা হল	। মোটামূতি ভাবে
		শরিমাণ Pbl₂ অধঃক্ষি						
	(A)	10 ⁻² mol	(B)	10^{-4} mol	(C)	$2 \times 10^{-4} \text{ mol}$	(D)	10^{-3} mol
44.	At:	273 K temperatur	e and	76 cm Hg pressur	e, the	density of a gas is	s 1.964	gL^{-1} . The gas is
		CH ₄		CO) He	(D)	CO_2
			76 cm	Hg চাপে, একটি গ্যা	সের ঘ	নত্ব 1.964 gL ⁻¹ হ	ল গ্যাসটি	रे रन
		CH_4		CO) He	(D)	CO ₂
	(£1) 			19				rages annulus (tragery, business ye also servery, annulus annu
A				17				

45.	Equ frac	al masses of tion of total pr	ethane and	l hydrogen ard rted by hydrog	mixed	in an empty	container a	at 298 K. T	he		
		15:16	(B)	_		1:4	(D)	1:6			
	298	K তাপমাত্রায় স	ন্মভ্রের দুটি	গ্যাস ইথেন এব	ৰং হাইডো	জেন একটি খ	` ′		ज्ञाडि		
				- ঠুক প্ৰদত্ত তা হল		• • • • • • • • • • • • • • • • • • • •		4- 404 6	-110		
	(A)	15:16	(B)	1:1	(C)	1:4	(D)	1:6			
46.	the g	given process (nds adiaba ?	tically against	vacuum.	Which of the	he following	is correct	for		
	(A)	$\Delta S = 0$	(B)	$\Delta T \approx -ve$	(C)	$\Delta \Omega = 0$	(D)	$\Delta P = 0$			
	একটি	ট আর্দশ গ্যাসের	শূন্যস্থানে ক্রণ্	নতাপীয় সম্প্রসার	ণ হলে নী	চর বিবৃতিগুলি	নর মধ্যে সঠিব	টি শনাক্ত ক	នី (
		$\Delta S = 0$		$\Delta T = -ve$							
47.				The tempe	rature at	which ice	begins to se	parate from	ı a		
		ture of 10 mass -1.86 °C	-	-3.72 °C	(C)	_3 3 °C	(D)	_3 °C			
	,						•				
	অধঃ	ক্ষিপ্ত হবে তা হল	: (জলের K	(পক্ষে) ইথিলিন _{''} এর মান 1.86 l	K kg mol	1)	াণ (খ(ক (ধ [্]	୬ ଅୟାଭାୟ ବର	1 42		
	(A)	−1.86 °C	(B)	−3.72 °C	(C)	-3.3 °C	(D)	-3 °C			
48.	the e	The radius of the first Bohr orbit of a hydrogen atom is 0.53×10^{-8} cm. The velocity of the electron in the first Bohr orbit is									
		$2.188 \times 10^8 \text{ c}$ $1.094 \times 10^8 \text{ c}$				4.376×10^{9}					
	-		094 × 10 ⁸ cm s ⁻¹ (D) - 2.188 × 10 ⁹ cm s ⁻¹ জন পরমাণুর প্রথম বোর কক্ষের ব্যাসার্ধ 0.53 × 10 ⁻⁸ cm। ঐ কক্ষে ইলেকট্রনের গতিবেগ হবে								
		≱াজেন প্রমাণুর⊹ - 2.188 × 10 ⁸ c		শ্কর ব্যাসাধ ().5							
	•	$1.094 \times 10^8 \text{ c}$				$4.376 \times 10^{8} \text{ cm s}^{-1}$ $2.188 \times 10^{9} \text{ cm s}^{-1}$					
	ζ-,				(12)	2.100 × 10	cm s				
49.				nents is not tru			_	_			
				lising than O_2 .					ond.		
	(C)	H – F bond is	stronger t	han H – O bon	d (D)	F is less cle	ectronegative	than O.			
	নিচের	কোন বিবৃতিটি বি	বৈক্রিয়া $2{ m F}_2$ -	$+2H_2O \rightarrow 4H_2$	F + O ₂ এ	র ক্ষেত্রে সত্য	नग्र?				
	(A)	O_2 অপেক্ষা F_2	তীব্রতর জার	ক ধর্মী							
	(B)	O = () বন্ধন অ		-							
				'বন্ধন অধিকতর	শক্তিশালী						
	(D)	() অপেক্ষা F এ	র তাড়ৎ ঋণ	অুকতা নিমুতর							
A				20							


Ā	4	د در استان از استان از استان از		21		a lan a lan mark and merkelan merkelan yang berapa yang berapa di Arabada .				
	(A)	1 গ্রাম Ag	(B)	1 গ্রাম Fe	(C)	1 গ্রাম CI ₂	(D)	1 গ্রাম Mg		
		লিখিত কোনটিতে পর				•				
				l g of Fe	(C)	1 g of Cl ₂	(D)	. I g of Mg		
53.				the largest number			(D)	1 f.M-		
					F	2				
	(A)	$2\sqrt{3}$	(B)	$3\sqrt{2}$	(C)	$\sqrt{3}$	(D)	2		
	4f ব	দক্ষ এবং 4s ক ্ষে থ	কা দুটি	ইলেকট্রনের মধ্যে তে	কীনিক	ভরবেগের পার্থক্য হ	ল			
	,			$3\sqrt{2}$			(D)	2		
52.		ther electron in a	ls orbi				in a	4f orbital and		
	(D)	বৃদ্ধি পায়, যেহেতু	আয়তন	্রাস পায়						
		_		এর অনুপাত বৃদ্ধি পায	Į					
	(B) অপরিবর্তিত থাকে									
	(A) হ্রাস পায়, যেহেতু H ₂ O -এর অনুপাত বৃদ্ধি পায়									
	দীর্ঘক্ষণ যাবৎ তড়িৎ বিশ্লেষণ করলে তরল জলের ঘনত্ত্বের কি ধরনের পরিবর্তন হয় এবং কেন হয় ?									
	(D)	Increases, as the				0 (
	(C) Increases, as the proportion of D ₂ O increases									
	(B)	Remains unchar								
	(A) Decreases, as the proportion of H ₂ O increases									
51.	How	and why does the	e densi	ity of liquid water	chang	e on prolonged el	ectrol	ysis?		
	(A)	4	(B)	6	(C)	3	(D)	1		
	ইউরেনিয়াম (₉₂ U) পরমানুতে বিজোড় ইলেকট্রনের সংখ্যা হল :									
	(A)		(B)		(C)		(D)	1		
50.	The i	number of unpaire	d elec	trons in the uranit			(755)	•		
					, ,					

Indicate the correct IUPAC name of the co-ordination compound shown in the figure. 54.

- Cis-dichlorotetraminochromium (III) chloride (A)
- Trans-dichlorotetraminochromium (III) chloride (B)
- Trans-tetraminedichlorochromium (III) chloride (C)
- (D) Cis-tetraamminedichlorochromium (III) chloride

চিত্রে প্রদর্শিত কোওর্ডিনেশন যৌগটির সঠিক IUPAC নাম নির্দেশ কর

- সিস্-ডাইক্লোরোটেট্রামিনোক্রোমিয়াম (III) ক্লোরাইড
- ট্রাম্স-ডাইক্লোরোট্ট্রোমিনোক্রোমিয়াম (III) ক্লোরাইড
- ট্রাম্স-টেট্রামিনভাইক্লোরোক্রোমিয়াম (III) ক্লোরাইভ (C)
- সিস্-টেট্রামিন্ডাইক্লোরোক্রোমিয়াম (III) ক্লোরাইড্
- What will be the mass of one atom of ${}^{12}C$? 55.
 - (A) 1 a.m.u.
- (B) 1.9923×10^{-23} g (C) 1.6603×10^{-22} g (D) 6 a.m.u

একটি 12C পরমাণর ভর কত ?

- (A) 1 a.m.u.
- (B) 1.9923×10^{-23} g (C) 1.6603×10^{-22} g (D) 6 a.m.u
- Bond order of He_2 , He_2^+ and He_2^{2+} are respectively: 56. (A) $1, \frac{1}{2}, 0$ (B) $0, \frac{1}{2}, 1$ (C) $\frac{1}{2}, 1, 0$ (D) $1, 0, \frac{1}{2}$ He₂, He⁺₂ এবং He²⁺₂ এর বন্ধনক্রম যথাক্রমে:

 (A) $1, \frac{1}{2}, 0$ (B) $0, \frac{1}{2}, 1$ (C) $\frac{1}{2}, 1, 0$ (D) $1, 0, \frac{1}{2}$

57.	7. To a solution of a colourless efflorescent sodium salt, when dilute acid is added, colourless gas is evolved along with formation of a white precipitate. Acidifi dichromate solution turns green when the colourless gas is passed through it. The sodium.										
					$Na_2S_2O_3$						
	একটি বর্ণহীন উদত্যাগী। অধঃক্ষেপ পড়ে। বর্ণহীন	সোডিয়া গ্যাসটি	ম লবনে লঘু অ আসিডযুক্ত ড	লসিভ <i>যোগ ক</i>	বলে বর্ণহীন গ্যাস	উৎপন্ন ই	য়ে ও সাদা বর্ণের				
	বর্ণ ধারণ করে। সোডিয়া $(A) = Na_2SO_3$		र र न Na ₂ S	(C)	$Na_2S_2O_3$	(D)	$Na_2S_4O_6$				
58.	The reaction for obta	ining t	he metal (M)) from its ox	ide (M ₂ O ₃) ore	is given	by				
	$M_2O_3(s) + 2Al(\ell)$	Heat	$AI_2O_3(\ell) + 1$	2M(s), (s s	oliđ, ℓ = liquid	1)					
	in that case, M is (A) Copper	(B)	Calcium	(C)	Iron		Zinc				
	একটি ধাতব অক্সাইড (!	M_2O_3	আকরিক থেবে	চ ধাতু পাও য়ার	জন্য যে বিক্রিয়	টি প্রয়োগ	করা যায় তা হল				
	$M_2O_3(s) + 2AI(t)$	1leat	$+\Delta I_2 O_3(\ell) +$	2M(s), $(s = s)$	solid, ℓ = liquid	d) সেক্ষে	a M হল				
	(A) ঁকপার	(B)	ক্যালসিয়াম	(C)	আয়রন	(D)	জিংক				
59.	In the extraction of	Ca by	electro redu	ction of mol	ten CaCl ₂ som	ne CaF ₂	is added to the				
	electrolyte for the fo (A) To keep the el	llowing ectroly	g reason : te in liquid s	tate at tempo	rature lower th	nan the m	a, p. of $CaCl_2$				
	(B) To effect preci (C) To effect the e	ipitatio	n of Ca								
	(D) To increase th	e curre	nt efficiency		6 6	- C	_ - C 0 B				
	গলিত CaCl ₂ এর তড়ি			নব্দাশনের জন	্য তাড়ৎ বিশ্লেষ্যে	র সঙ্গোক	ছু পারমান Car ₂				
	্যোগ করা হয় যে কারণে (A) তড়িৎ বিশ্লেষ্যকে	ণ তা হ ল CaCla	া: _এর গলনাংকে	র নিচের উষ্ণও	গায় তরল অবস্থায়	রাখার জ	ন্য				
	(B) Ca কে অধক্ষিপ্ত	করার ভ	ह ने								
	(C) আরও নিয়ুতর বি			টানোর জন্য							
	(D) তড়িৎ উৎকর্ষতা	•				e at	lu alea magadian				
60.	The total number $Me_3C - CH = CH_2$			(including	stereoismers)	tormed 1	in the reaction				
	(A) 1			(B)		6					
	(C) 3										
			HBr → এহ	াবাক্র-য়ায় ডৎ	প্রেম্ব অ্যালাকল	(ব্রোমাহ(ড	র স্ব(মাত সংখ্যা				
	(শ্টিরিওআইসোমার সং (A) 1	< <i>)</i> < U		(B)							
	(C) 3			(D)	কোন ব্রোমাইড	উৎপন্ন হ	ग्र ना ।				
A	agent agregation and the matter of the control of t	 .		23							

61. CI—Br
$$\frac{1. \text{ Mg/diethyl ether}}{2. \text{ CH}_2\text{O}}$$
 Product 3. $\text{H}_3\text{O}^{\oplus}$

This product in the above reaction is উপরোক্ত বিক্রিয়ায় উৎপন্ন যৌগটি হল :

(B)
$$CI \longrightarrow CH_2OH$$

(C)
$$CI \longrightarrow CH_2OH$$

Me
$$\longrightarrow$$
 CO₂CH₂

For the above three esters, the order of rates of alkaline hydrolysis is উপরোক্ত তিনটি এস্টারের ক্ষারীয় আর্দ্রবিশ্লেষণের বিক্রিয়া গতির ক্রম হল:

(A) I > II > III

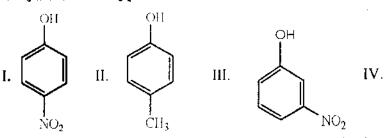
(C) I > III > II

(D) III > I > II

COOH

OCH₁

63. Ph - CDO
$$\xrightarrow{50\% \text{ aq. NaOH}}$$
 Ph - COOH + an alcohol. This alcohol is Warm


(A)
$$Ph - CHD - OH$$
 (B) $Ph - CHD - OD$ (C) $Ph - CD_2 - OH$ (D) $Ph - CD_2 - OD$

$$Ph-CDO \xrightarrow{50\% \ aq. \ NaOH} Ph-COOH + একটি অ্যালকোহল। এই অ্যালকোহলটি হল Warm$$

(A)
$$Ph - CHD - OH$$
 (B) $Ph - CHD - OD$ (C) $Ph - CD_2 - OH$ (D) $Ph - CD_2 - OD$

64. The correct order of acidity for the following compounds is:

নিমুলিখিত যৌগগুলির অম্লত্বের সঠিক ক্রুম হল:

 $(A) \quad II < JV < III < I$

A

(C) II < III < IV < I

(B) II < III < I < IV

(D) III < II < I < IV

For the following carbocations the correct order of stability is 65.

 $\text{II}: {}^{\textstyle \oplus}\text{CH}_2 - \text{COCH}_3 \qquad \qquad \text{III}: {}^{\textstyle \oplus}\text{CH}_2 - \text{OCH}_3 \qquad \qquad \text{III}: {}^{\textstyle \oplus}\text{CH}_2 - \text{CH}_3$

 $(A) \quad III < II < I$

(B) II < I < III (C) I < II < IIII

(D) $I \leq III \leq II$

নিমুলিখিত কার্বোক্যাটায়নগুলির ক্ষেত্রে স্থায়িত্বের সঠিক ক্রুমটি হল :

 $I: {}^{\oplus}CH_2 - COCH_3$ $II: {}^{\oplus}CH_2 - OCH_3$

III : ${}^{\oplus}CH_2 - \dot{CH}_3$

 $(A) \quad III \le II \le I$

(B) II < I < III

 $(C) \quad I \le II \le III$

 $(D) \quad I < III < II$

The reduction product of ethyl 3-oxobutanoate by $NaBH_4$ in methanol is 66. ইথাইল 3-অক্সোবিউটানোয়েটের মিথানল মাধ্যমে NaBH4 দ্বারা বিজ্ঞারণ ঘটালে উৎপন্ন বিক্রিয়াজাত পদার্থটি হল:

(B)

(D)

What is the major product of the following reaction? 67.

নিমুলিখিত বিক্রিয়াটির প্রধান বিক্রিয়া জাত পদার্থটি কি ?

(B)

(A)

 O_2N

(C)

O₂N

 O_2N

68. The maximum number of electrons in an atom in which the last electron filled has the quantum numbers n = 3, l = 2 and m = -1 is

(A) 17

(B) = 27

(C) 28

(D) - 30

একটি পরমাণুর সর্বশেষ ইলেক্ট্রনের কোয়ান্টাম সংখ্যাগুলি যদি ${f n}=3,\,l=2$ এবং ${f m}=-1$ হয় তবে ঐ পরমাণুর সর্বাধিক ইলেক্ট্রন সংখ্যা হবে

(A) 17

(B) 27

(C) = 28

(D) = 30

69. In the face-centred cubic lattice structure of gold the closest distance between gold atoms is ('a' being the edge length of the cubic unit cell)

(A) $a\sqrt{2}$

(B) $\frac{a}{\sqrt{2}}$

(C) $\frac{a}{2\sqrt{2}}$

(D) $2\sqrt{2}$ a

গোল্ড এর পৃষ্ঠকেন্দ্রিক ঘনাকাকার কেলাসে গোল্ড পরমাণুর মধ্যে নিকটতম দূরত্ব হল : ('a' হল ঘনকাকার একক কোশে বাহুর দৈর্ঘ্য)

(A) $a\sqrt{2}$

(B) $\frac{a}{\sqrt{2}}$

(C) $\frac{a}{2\sqrt{2}}$

(D) $2\sqrt{2} a$

70. The equilibrium constant for the following reactions are given at 25° C

 $2A \rightleftharpoons B + C$, $K_1 = 1.0$

 $2B \rightleftharpoons C + D$, $K_2 = 16$

 $2C + D \rightleftharpoons 2P$, $K_3 = 25$

The equilibrium constant for the reaction $P \rightleftharpoons A + \frac{1}{2}B$ at 25 °C is

(A) $\frac{1}{20}$

(B) 20

(C) $\frac{1}{42}$

(D) 21

25 °C উষ্ণতায় নিমুলিখিত বিক্রিয়াগুলির সামধ্রেবক এর মান দেওয়া আছে

 $2A \implies B + C, K_1 = 1.0$

 $2B \rightleftharpoons C + D$, $K_2 = 16$

 $2C + D \rightleftharpoons 2P, K_3 = 25$

 $25~^{\circ}C$ উষ্ণতায় $P \Longrightarrow A + \frac{1}{2}\,B$ বিক্রিয়াটির সাম্যধুবক এর মান হল

(A) $\frac{1}{20}$

Ā

(B) 20

(C) $\frac{1}{42}$

(D) 21

Category-II (Q. 71 to 75)

Carry 2 marks each and only one option is correct. In case of incorrect answer or any combination of more than one answer, ½ mark will be deducted. একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।

- A solution is saturated with $SrCO_3$ and SrF_2 . The $[CO_3^{2+}]$ is found to be 1.2×10^{-3} M. 71. The concentration of F- in the solution would be
 - (A) $3.7 \times 10^{-6} \text{ M}$ (B) $3.2 \times 10^{-3} \text{ M}$ (C) $5.1 \times 10^{-7} \text{ M}$ (D) $3.7 \times 10^{-2} \text{ M}$

Given: K_{sp} (SrCO₃) = 7.0 × 10⁻¹⁰, K_{sp} (SrF₂) = 7.9 × 10⁻¹⁰

একটি দ্রবণ ${
m SrCO_3}$ এবং ${
m SrF_2}$ দ্বারা সম্পৃক্ত । ঐ দ্রবণে ${
m [CO_3}^2$] এর মাত্রা $1.2 imes 10^3$ M হলে ${
m F^-}$ আয়নের গাঢ়ত্ব হবে

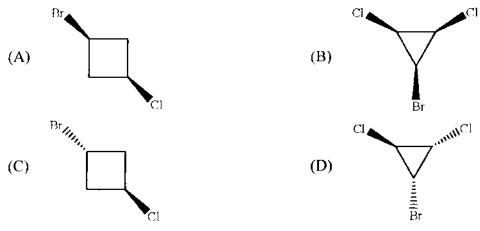
- (A) $3.7 \times 10^{-6} \text{ M}$ (B) $3.2 \times 10^{-3} \text{ M}$ (C) $5.1 \times 10^{-7} \text{ M}$ (D) $3.7 \times 10^{-2} \text{ M}$ দেওয়া আছে : $K_{\rm sp} \, ({\rm SrCO_3}) = 7.0 \times 10^{-10}, \, K_{\rm sp} \, ({\rm SrF_2}) = 7.9 \times 10^{-10}$
- A homonuclear diatomic gas molecule shows 2-electron magnetic moment. The 72. one-electron and two-electron reduced species obtained from above gas molecule can act as both oxidizing and reducing agents. When the gas molecule is one-electron oxidized the bond length decreases compared to the neutral molecule. The gas molecule is
 - (A) N_2
- (B) Cl_2 (C) O_2 (D) B_2

একটি সমকেন্দ্রকীয় (হোমোনিউক্লিয়ার) দ্বিপারমাণবিক গ্যাস ইলেকট্রেনীয় দ্বি-চৌম্বকীয় ভ্রামক দেখায়। গ্যাসটির থেকে এক-ইলেকট্রন এবং দুই-ইলেকট্রনীয় বিজারনের ফলে উৎপন্ন বস্তুগুলি জারক ও বিজারক উভয় হিসাবেই কাজ করতে পারে। উক্ত গ্যাসটির এক-ইলেকট্রনীয় জারণের ফলে উৎপন্ন বস্তুটির বন্ধন দৈর্ঘ্য গ্যাসটির তুলনায় হ্রাস পায়। গ্যাসটি হল

- (A) N_2
- (B) Cl_2 (C) O_2

73.
$$CH_3 - O - CH_2 - CI \xrightarrow{aq. \ThetaOH} CH_3 - O - CH_2 - OH$$

Which information below regarding this reaction is applicable?


- It follows S_N2 pathway, because it is a primary alkyl chloride.
- It follows S_N1 pathway, because the intermediate carbocation is resonance stabilized.
- (C) S_N1 pathway is not followed, because the intermediate carbocation is destabilised by -1 effect of oxygen.
- A mixed $S_N 1$ and $S_N 2$ pathway is followed.

$$CH_3 - O - CH_2 - CI \xrightarrow{\text{aq.} \Theta OH} CH_3 - O - CH_2 - OH$$

নিমুলিখিত কোন তথ্যটি এই বিক্রিয়া সম্বন্ধে প্রযোজ্য ?

- (A) ইহা $S_N 2$ পথ অনুসরণ করে, কারণ এটি একটি প্রাইমারী আলেকিল ক্লোরাইড।
- (B) ইহা $S_N 1$ পথ অনুসরণ করে, কারণ বিক্রিয়ামধ্যস্থ কার্বোক্যাটায়নটি সংস্পদ্দন দারা সৃস্থিত।
- $(C)-S_N^{-1}$ পথ অনুসৃত হয় না, কারণ বিক্রিয়ামধ্যস্থ কার্বোক্যাটায়নটি অক্সিচ্চেনের -1 প্রভাবদারা দুঃস্থিত।
- (D) মিশ্র $S_N 1$ ও $S_N 2$ পথ অনুসৃত হয়।
- Which of the following compounds is asymmetric?

নিমুলিখিত যৌগগুলির মধ্যে কোনটি অপ্রতিসম যৌগ ?

- For a reaction 2A + B \rightarrow P, when concentration of B alone is doubled, $t_{1/2}$ does not 75. change and when concentrations of both A and B is doubled, rate increases by a factor of 4. The unit of rate constant is,
 - (B) $L \text{ mol}^{-1} \text{ s}^{-1}$ (C) $\text{mol } L^{-1} \text{ s}^{-1}$ (D) $L^2 \text{mol}^{-2} \text{ s}^{-1}$ (A) s^{-1} 2A+B
 ightarrow P বিক্রিয়াটির ক্ষেত্রে যখন শুধুমাত্র B এর গাঢ়ত্ব বিশুণ করা হয় $t_{1/2}$ অপরিবর্তিত থাকে, কিন্তু যদি A এবং B উভয়ের গাঢ়ত্ব দ্বিগুণ করা হয়, বিক্রিয়াটির হার চার গুণ বৃদ্ধি পায়। বিক্রিয়াটির হার ধ্রবকের একক হল
 - (A) s^{-1}

- (B) $L \text{ mol}^{-1} \text{ s}^{-1}$ (C) $\text{mol } L^{-1} \text{ s}^{-1}$ (D) $L^2 \text{mol}^{-2} \text{ s}^{-1}$

Category-III (Q. 76 to 80)

Carry 2 marks each and one or more option(s) is/are correct. If all correct answers are not marked and no incorrect answer is marked, then score = 2 × number of correct answers marked ÷ actual number of correct answers. If any wrong option is marked or if any combination including a wrong option is marked, the answer will be considered wrong, but there is no negative marking for the same and zero mark will be awarded.

এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা । যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ

শুন্য নম্বর পাবে।

76. Which of the following statement (s) is / are incorrect:

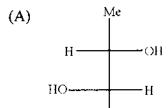
- (A) A sink of SO_2 pollutant is O_3 in the atmosphere.
- (B) FGD is a process of removing NO₂ from atmosphere.
- (C) NO_x in fuel gases can be removed by alkaline scrubbing.
- (D) The catalyst used to convert CCl_4 to CF_4 by HF is SbF_5 .

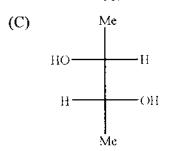
নিম্নলিখিত বিবৃতিগুলির মধ্যে কোনটি / কোনগুলি সঠিক নয় ?

- (A) বাযুমভলের O3 হোল SO2 দূষকের (pollutant) একটি খাদ।
- (B) FGD প্রক্রিয়ায় বায়ুমন্ডল থেকে NO₂ দূরীভূত করা হয়।
- (C) গ্যাসীয় জ্বালানি থেকে NO্র কে ক্ষারীয় গ্যাস প্রক্ষালন (scrubbing) দ্বারা দূরীভূত করা যায়।
- (D) $\mathrm{CC}l_4$ কে HF দ্বারা CF_4 -এ রূপান্তর করতে SbF_5 অনুঘটক হিসাবে কাজ করে।

77	SiO ₂ is attacked by whi	ch one / ones	of the fallo	wina 2
//-	3105 is attacked by will	ch one / ones	or the forie	wing:

(A)	HF	(B)	conc. HCl	(C)	hot NaOH	(D)	Fluorine
কোনা	ট বা কোনগুলি SiO ₂	র সঙ্গে	F বিক্রিয়া করে ?				


(A) HF (B) গাঢ় HC/ (C) উষ্ণ NaOH (D)



78. Me - C = C - Me $\xrightarrow{\text{Na/NH}_3(\text{liq.})}$ X $\xrightarrow{\text{dil.alkaline KMnO}_4}$ Product(s)

The product(s) from the above reaction will be

উপরের বিক্রিয়ায় উৎপন্ন পদার্থ (গুলি) হল

(D) Me
HO——H

79. Which of the following reactions give(s) a *meso*-compound as the main product?

নিম্নলিখিত বিক্রিয়াগুলির মধ্যে কোনটির ক্ষেত্রে প্রধান বিক্রিয়াজাত পদার্থ হিসাবে মেসো-যৌগ উৎপন্ন
হয় ?

(A)
$$\longrightarrow \frac{\operatorname{Br}_2}{\operatorname{CH}_2\operatorname{Cl}_2}$$

(B) $\longrightarrow \frac{H_2}{Pd-C}$

(C)
$$\frac{\text{II}_2}{\text{Lindlars catalyst}}$$

- 80. For spontaneous polymerization, which of the following is (are) correct?
 - (A) ΔG is negative.

(B) ΔH is negative.

(C) ΔS is positive.

(D) Δs is negative.

স্বতঃস্ফূর্ত বহুলীভবন (পলিমারিজেশন) এর ক্ষেত্রে নিম্নের কোনটি / কোনগুলি সঠিক ?

(A) ΔG এর মান ঋণাত্মক

(B) ΔH এর মান ঋণাত্মক

(C) As এর মান ধণাত্মক

A

(D) ΔS এর মান ঋণাত্মক

PC-2020 SPACE FOR ROUGH WORK

31

PC-2020 Subject : PHYSICS & CHEMISTRY

সময়: ২ ঘণ্টা

সর্বাধিক নম্বর: ১০০

নির্দেশাবলী

- এই প্রশ্নপত্রে তিনটি ক্যাটেগরির অবজেঞ্জিভ প্রশ্ন আছে এবং প্রতিটি প্রশ্নের চারটি সম্ভাব্য উত্তর দেওয়া আছে।
- ২. Category-I: একটি উত্তর সঠিক। সঠিক উত্তর দিলে I নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ¼ নম্বর কাটা যাবে।
- ৩. Category-II: একটি উত্তর সঠিক। সঠিক উত্তর দিলে 2 নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে ½ নম্বর কাটা যাবে।
- 8. Category-III: এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে 2 নম্বর পাবে। যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে 2 × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি উত্তর সঠিক তার সংখ্যা। যদি কোনো ভুল উত্তর দেওয়া হয় বা একাধিক উত্তরের মধ্যে একটিও ভুল থাকে তাহলে উত্তরটি ভুল ধরে নেওয়া হবে। কিন্তু সেক্ষেত্রে কোনো নম্বর কাটা যাবে না, অর্থাৎ শুন্য নম্বর পাবে।
- ৫. OMR পত্রে A, B,C, D চিহিন্ত সঠিক ঘরটি ভরাট করে উত্তর দিতে হবে।
- ৬. OMR পত্রে উত্তর দিতে তথুমাত্র কালো বা নীল বল পয়েন্ট পেন ব্যবহার করবে।
- OMR পত্রে নির্দিষ্ট স্থান ছাড়া অন্য কোথাও কোন দাগ দেবে না।
- ৮. OMR পত্রে নির্দিষ্ট স্থানে প্রশ্নপত্রের নম্বর এবং নিজের রোল নম্বর অতি সাবধানতার সাথে লিখতে হবে এবং প্রয়োজনীয় ঘরগুলি পূরণ করতে হবে।
- ৯. OMR পত্রে নির্দিষ্ট স্থানে নিজের নাম ও পরীক্ষা কেন্দ্রের নাম লিখতে হবে এবং নিজের সম্পূর্ণ স্বাক্ষর দিতে।
- ১০. প্রশ্নপত্রর নম্বর বা রোল নম্বর ভূল লিখলে অথবা ভূল ঘর ভরাট করলে, পরীক্ষার্থীর নাম, পরীক্ষা কেন্দ্রের নাম বা স্বাক্ষরে কোন ভূল থাকলে উত্তর পত্র বাতিল হয়ে য়েতে পারে। OMR পত্রটি ভাঁজ হলে বা তাতে অনাবশ্যক দাগ পড়লেও বাতিল হয়ে য়েতে পারে। পরীক্ষার্থীর এই ধরনের ভূল বা অসর্তকতার জন্য উত্তরপত্র বাতিল হলে একমাত্র পরীক্ষার্থী নিজেই তার জন্য দায়ী থাকবে।
- ১১. মোবাইলফোন, ক্যালকুলেটর, স্লাইডরুল, লগটেবল, হাতঘড়ি, রেখাচিত্র, গ্রাফ বা কোন ধরণের তালিকা পরীক্ষা কক্ষে আনা যাবে না। আনলে সেটি বাজেয়াপ্ত হবে এবং পরীক্ষাথীর ওই পরীক্ষা বাতিল করা হবে।
- ১২. প্রশ্নপত্রের শেষে রাফ কাজ করার জন্য ফাঁকা জায়গা দেওয়া আছে। অন্য কোন কাগজ এই কাজে ব্যবহার করবে না।
- ১৩. পরীক্ষা কক্ষ ছাড়ার আগে OMR পত্র অবশ্য ই পরিদর্শককে দিয়ে যাবে।
- ১৪. এই প্রশ্নপত্রে ইংরাজী ও বাংলা উভয় ভাষাতেই প্রশ্ন দেওয়া আছে। বাংলা মাধ্যমে প্রশ্ন তৈরীর সময় প্রয়োজনীয় সাবধানতা ও সতর্কতা অবলম্বন করা হয়েছে। তা সত্ত্বেও যদি কোন অসঙ্গতি লক্ষ্য করা যায়, সেক্ষেত্রে ইংরাজী মাধ্যমে দেওয়া প্রশ্ন ঠিক ও চুড়ান্ত বলে বিবেচিত হবে।

